

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

Small wastewater treatment facilities: CEE countries and Slovak experience

EU4Environment Armenia, Azerbaijan, Belarus, Georgia, Republic of Moldova, Ukraine

Action funded by the European Union

Prof. Ing. Igor Bodík, PhD.

28th January 2022

Global Water Partnership – Central and Eastern Europe

GWP Central and Easter Europe was established in 1998 and it is an international network of organizations involved in water resources management.

GWP CEE's international network comprises 12 Country Water Partnerships (CWPs) in Bulgaria, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Moldova, Poland, Romania, Slovakia, Slovenia and Ukraine with more than 170 partner organizations from different sectors.

https://www.gwp.org/en/GWP-CEE/

GWP CEE Sustainable sanitation activities

- 2002 GWP CEE Start of national sustainable sanitation activities
- 2004 GWP CEE Sustainable Sanitation Task Force founded
- 2007 Sustainable Sanitation in CEE addressing the needs of small and medium-size settlements (book in 12 languages)
- 2012 Natural processes of wastewater treatment actual status in CEE countries (Questionnaire study).
- 2014 Natural Technologies of Wastewater Treatment (book)
- 2021 Wastewater collection, treatment, and reuse in rural areas of Central and Eastern Europe (Questionnaire study).

Central and Eastern Europe – Demography

Country	Population	Settlements < 2000 PE	Population in settlements < 2000 P					
	(1000x)	(%)	(%)	(1000x)				
Bulgaria	6 888	90%	26%	1 790				
Croatia	4 285	97%	39%	1 664				
Czechia	10 703	90%	27%	2 885				
Estonia	1 300	99%	31%	401				
Hungary	9 890	75%	17%	1 658				
Latvia	1 900	91%	43%	820				
Moldova	2 034	33%	n.d.	n.d.				
Montenegro	621	98%	20%	125				
Poland	37 660	n.d.	27%	10 000				
Romania	19 186	38%	10%	1 915				
Slovakia	5 459	85%	30%	1 645				
Slovenia	2 108	98%	52%	1 087				
Ukraine	41 342	95%	32%	13 093				
Total	143 380	92%	30%	37 300				

Population connected on WWTPs in small settlements

	Total number of inhabitants living is settlements < 2000	Total number of inhabitants connected to WWTP < 2000 PE	Ratio of connected population in small settlements				
Bulgaria	1 762 153	No data	-				
Croatia	1 664 400	19,669	1%				
Czechia	2 850 000	1 250 000	44%				
Estonia	401 014	102,000	25%				
Hungary	1 658 304	738,477	45%				
Latvia	820 000	90,000	11%				
Moldova		No data	- *				
Montenegro	125 000	2,500	2%				
Poland	10 000 000	No data					
Romania	1 915 072	156,598	8%				
Slovakia	1 645 276	413,000	25%				
Slovenia	1 086 815	No data	- / -				
Ukraine	13 093 100	780,000	6%				

Central and Eastern Europe – Connection to systems

WWTP

WWTPs distribution according capacity

	WWTP capacity (PE)													
	<50	50-2,000	2,000-10,000	10,000-100,000	>100,000	Total								
Bulgaria	6	4		109		173								
Croatia	1	80	54	55	5	195								
Czechia						2 795								
Estonia	96	429	39	18	6	588								
Hungary	4254**	210**	380	197	21	808								
Latvia	15	1,005	63	16	1	1 100								
Moldova		>300	73	1										
Montenegro	No data	5	2	7	1	15								
Poland	8,000*	No data	1,095	535	102	1 732								
Romania	12	354	633	132	66	1 197								
Slovakia	15,000*	441	236	74	6	757								
Slovenia	No data	430	88	37	4	559								
Ukraine		780	343	417	44	1 584								

* estimated ** sum with septics tanks

Treatment technologies in CEE countries

PE<2000	Bulgaria	Croatia	Estonia	Hungary	Latvia	Moldova	Montenegro	Poland	Romania	Slovakia	Slovenia	Ukraine
Sequencing batch reactors (SBR)	1	-	2	2	3	-	1	2	2	1	1	3
Moving bed biofilm reactor (MBBR)	-	-	2	1	-	-	-	2	1	-	2	-
Membrane bioreactor (MBR)	-	-	-	-	-	-	-	-	2	1	1	-
Activated sludge system	-	-	2	<u> </u>	_		-	-	-	3	-	-
Upflow anaer. sludge blanket (UASB)	-	-	-	-	_	-	-	-	1	-	1	-
Sand filter	1	-	2	-	_	2	_	-	2	1	_	-
Soil infiltration	-	-	1	1	-	2	-	-	-	1	1	2
Willow system	-	-	-	1	-	-	-	-	-	-	-	-
Waste stabilization ponds		-	-	-	-	-	-	-	-	_	1	-
Aerated/aerobic ponds	1	-	2	-	-	-	-	-	1	-	-	-
Treatment wetlands	-	2	1	-	X	2	2	1		-	1	1
Sludge treatment reed beds	-	2	-	-	1	1	2	-	1	-	1	- /
Water-tight septic tank	1	-	1	-	_	1	2	_	0	1	2	2
Septic pits, burial pits	-	-	-	-	-	-	-	-	-	-	-	-

- never 1 - rarely 2 - often 3 - mostly

Discharge limits for small WWTPs < 2000 PE

	Bulgaria	Croatia	Est	tonia	Hungary		Latvia	Poland		Romania		Slovakia		Slovenia		Ukraine		
Parameter (mg/l)	All sizes	All sizes	PE<300	300 <pe<2000< th=""><th>PE<50</th><th>PE<600</th><th>601<pe<2000< th=""><th>50<pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""></pe<2000<></th></pe<2000<></th></pe<2000<></th></pe<2000<></th></pe<2000<></th></pe<2000<></th></pe<2000<></th></pe<2000<>	PE<50	PE<600	601 <pe<2000< th=""><th>50<pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""></pe<2000<></th></pe<2000<></th></pe<2000<></th></pe<2000<></th></pe<2000<></th></pe<2000<></th></pe<2000<>	50 <pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""></pe<2000<></th></pe<2000<></th></pe<2000<></th></pe<2000<></th></pe<2000<></th></pe<2000<>	PE<50	50 <pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""></pe<2000<></th></pe<2000<></th></pe<2000<></th></pe<2000<></th></pe<2000<>	PE<50	50 <pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""></pe<2000<></th></pe<2000<></th></pe<2000<></th></pe<2000<>	PE<50	50 <pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""></pe<2000<></th></pe<2000<></th></pe<2000<>	PE<50	50 <pe<2000< th=""><th>PE<50</th><th>50<pe<2000< th=""></pe<2000<></th></pe<2000<>	PE<50	50 <pe<2000< th=""></pe<2000<>
COD	125	125	150	125	75-150	300	50-150	50-70%		150	125	125		135/170	200	150	80	80
BOD	25	25	40	25		80	15-50	50-70%	20%	40	25	25	40 / 70	30/60		30	15	15
TSS	35	35	35	35		100	35-200	<35	50%	50	60	60		30/60			15	15
TN				60			20-55			30							0.39	0.39
NH ₄ -N					10-40		2-20				3	3						
NO ₃ -N			45	45							37	37						
NO ₂ -N			0.1	0.1							2	2						
ТР				2			0.7-10											
PO ₄ -P										5"	6	6						
Others							E-Coli				Cl ⁻ , dete phe sulpl	ergents, nols, hides						

Slovak Republic in water characteristics

- 5,4 Mil. inhabitants
- 2 890 settlements
- 2 512 settlements with < 2000 inhabitants = 1,6 Mil. inhabitants</p>
- 90 % connection on public water supply
 - 80 % of drinking water from underground water reservoirs
 - 80 L/cap.day daily water consumption (degrease from 190 L/cap.day in 1990y)
- 70 % connection on public sewerage systems

Slovak Republic towards higher WS-WW connection

- 2004 access to the European Union
 - Requirements for wastewater treatment goals
 - 2010 biological WWTPs for all settlements above 10 000 PE (fulfilled in 2016)
 - 2015 biological WWTPs for all settlements above 2 000 PE (not met yet...)
 - 2004 2020 EU investment funds for sewerage and WWTPs ca 2 billions €
 - Completely new water legislation (according to EU legislation but with SK specifics)
 - Emission and imission principle
 - Nitrogen and phosphorus removal
 - Increasing of prices (300 000 € per sewerage kilometer)
 - High level of wastewater research, cooperation between universities water companies

Slovak Republic actual status in small WWTPs

- 2000 2015 focusing mainly on large WWTPs (90% financial support from EU)
- ca. 400 000 individual houses without connection to sewerage and WWTP
- Scattered positioning of family houses in the countryside
- High investment cost to connection and treatment
- No (low) government financial support
- Sewage discharge without strict control
 - transferred control to municipalities
- Low environmental awareness of rural population

Slovak Republic towards small WWTPs development

Four models of actually statuses in small settlements under 2000 inhabitants

- 1. Small settlement is connected to large WWTP in near city
- 2. Small settlement has own WWTP
- 3. Small settlement has no own WWTP, and individual houses use own domestic WWTPs
- 4. Small settlement has no own WWTP, and individual houses use cesspools

Small settlement is connected to large WWTP in near city

- Agglomerations were created during preparation of EU projects
 - The agglomeration consisted of one or more municipalities
 - In the frame of one agglomeration small settlements were connected to sewerage and WWTP of larger city
 - Residents in settlement are required to connect to the sewer if it is within an <u>economically</u> accessible distance
 - economically accessible distance is not defined...
 - it is solved individually
 - No more EU funds for large WWTPs

Small settlement has own WWTP

- The preparation and construction of the treatment plant depends only on the initiative of the municipality (mayor)
- There are very limited funding from the government
 - Slovak Environment Fund
 - The goal is to connect more than 85 % of inhabitants in settlement
 - Residents in settlement are required to connect to the sewer if it is within an economically accessible distance
 - No more individual domestic WWTPs are allowed
 - No more individual cesspools (or septic tanks) are allowed

Small settlement with individual domestic WWTPs

- The construction of domestic WWTP is solely a citizen's initiative
- Currently, about 10 000 domestic WWTP are in operation (5 10 PE)
- Activated sludge systems predominate
- Natural WWTPs (CWs) are pushing very slowly (100 small CW's in operation)

Small settlement with individual cesspools

- No central sewerage is available
- Tight cesspools only acceptable
- Septic tanks (continually overflowed) as individual treatment step not allowed
- The municipality should provide the control of cesspool contents export
- The citizen is obliged to ensure the transport of cesspool contents to the nearest WWTP
 - No free capacity on WWTPs
 - Increasing of prices for discharge (up to 100 € per one legal emptying of 10 m³ per month)
 - Illegal discharge to near river, soil

References for downloads

Bodík, I., Riddelsdolpe, P.: Sustainable Sanitation in CEE – adressing the needs of small and mediumsize settlements (in 12 languages) <u>https://www.gwp.org/globalassets/global/gwp-</u> <u>cee_files/regional/sustainable-sanitation-en.pdf</u>

Bodík, I. et al.: Natural processes of wastewater treatment – actual status in CEE countries (Questionnaire study). GWP CEE, Bratislava. Available at: <u>https://www.gwp.org/globalassets/global/gwp-cee_files/regional/q-study-report-cee.pdf</u>

Rozkošny, M., Kriška, M., Šalek, J., Bodik, I., Istenič, D. 2014. Natural technologies of wastewater treatment, GWP CEE. <u>https://www.gwp.org/globalassets/global/gwp-cee_files/regional/natural-treatment.pdf</u>

Istenič, D. et al.: Wastewater collection, treatment, and reuse in rural areas of Central and Eastern Europe (Questionnaire study). <u>https://www.gwp.org/globalassets/global/gwp-</u> cee_files/taskforces/sustainable-sanitation-task-force-report-2022.pdf

Thank you for your atention!!

Prof. Ing. Igor Bodík, PhD. Dept. Environmental Engineering Faculty of Chemical and Food Technology Slovak University of Technology Bratislava Slovak Republic

igor.bodik@stuba.sk

